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Connectedness

        CONNECTED SETS

As we’ll see in this section, a better understanding of the special nature of intervals in R 

will allow us to generalize the intermediate value theorem of calculus. This theorem is 

the formal statement of the informal notion that the graph of a continuous function is 

“unbroken”. The historical basis of the theorem is the concept of a function as measur-

ing, over time, the relative position of an object moving along a straight line. Thus, if we 

track the position y = f HxL of a moving object between time x = a and some subsequent 

time x = b, we would expect the object to “visit” all of the positions y that are intermedi-

ate to f HaL and f HbL. In short, the continuous image of the time interval @a, bD  should 

contain (at least) the full interval of positions between f HaL and f HbL. The secret here is 

the intuitively obvious fact that no interval in R can be split into two relatively open 

parts. We’ll prove this by “brute force” for the interval @a, bD (we’ll do the other cases 

shortly).

Suppose to the contrary that @a, bD = A Ü B, where A and B are nonempty, disjoint, 

relatively open sets in @a, bD. We are going to find a contradiction by examining the 

“border” between A and B. The trouble comes from the fact that A and B are necessarily 

also closed in @a, bD, since each is the complement of an open set: A = @a, bD\B and 

B = @a, bD\A, and so each of A and B lays claim to the “border”. 

To get started, we might as well assume that b Î B, and so Hb - ¶, bD Ì B, for some ¶ > 0, 

since B is open. Now let c = supHAL. Clearly, a £ c £ b, but note that, since A and B are 

open in @a, bD, we actually have a < c < b. Next, it follows from the definition of c that

                Hc - ¶, cL Ý A ¹ Æ         and         Hc, c + ¶L Ý B ¹ Æ 

for any ¶ > 0; in fact, Hc, bD Ì B.

That is, c Î A and c Î B. But then, c Î A Ý B = A Ý B = Æ.(ÞÜ)

This contradiction shows that no such splitting of @a, bD into nonempty, disjoint, open 

sets is available. 

Definition: Based on the above observation, we say that a metric space M  is discon-

nected (or not connected) if M  can be split into the union of two nontrivial open sets, 

that is, if there are nonempty open sets A and B in M  with A Ý B = Æ and A Ü B = M . 

The pair of open sets A and B is called a disconnection of M . We say that M  is con-

nected if no such disconnection can be found. Thus, for example, @a, bD is connected. 

Notice that we could just as well have used closed sets in our definition. If a disconnec-

tion A - B exists, then the disconnecting sets are also closed: A = Bc and B = Ac. That is, 

A and B are clopen sets. Conversely, if M  contains a nontrivial clopen subset A (i.e. a 

clopen set other than Ø  or M ), then A and Ac are a disconnection for M . 

This gives us our first theorem: 

• Theorem:

M  is connected iff M  contains no nontrivial clopen sets. 

Example:

a) R is connected. (We can show that R contains no nontrivial clopen sets by showing 

that if A is a nontrivial open subset of R, then A > A.)

b) A discrete space containing two or more points is disconnected. 

c) The empty set Ø  and any one-point space are connected (by default). 

d) The Cantor set D is (very!) disconnected. Indeed, it follows from previous work that for 

any with x < y there is a z Ï D such that x < z < y. Thus, D is disconnected by the 

(relatively) open sets A = @0, zL Ý D and B = Hz, 1D Ý D.      Ù

Our terminology for connectedness is unavoidably fussy. After all, we have defined con-

nectedness in terms of what it is not, namely, disconnected. To make matters worse, at 

least on the surface, part d) of the above example and our proof that @a, bD is connected 

both suggest the frightening prospect of “relatively connected” as an altogether separate 

notion. Well, fear not! Connectedness is not a relative property for metric spaces. 

To see why, we will need to face the relative definition head-on:

A subset E of a metric space M  is disconnected in E if there exist disjoint, nonempty, 

open (in E) sets U and V  such that E = U Ü V . 

Now, it is immediate that this gives us a pair of open sets A and B in M  such that 

U = A Ý E and V = B Ý E. And so “unrelating” the relative definition, by writing it in 

terms of A and B, yields:

B Ý E ¹ Æ ,   HA Ý EL Ý HB Ý EL = Æ,  and  E = HA Ý EL Ü HB Ý EL or  E Ì A Ü B .

(ÏÏÏ)This mess would be greatly simplified if we could take A and B to be disjoint in 

M . While this need not hold true in more general settings, luck is with us in a metric 

space. 

• Lemma: Let E be a subset of a metric space M . If U and V  are disjoint open sets in E, 

then there are disjoint open sets A and B in M  such that U = A Ý E and V = B Ý E. 

Proof:

For each x Î U there is an ¶x > 0 such that B¶x

E HxL = E Ý B¶x

M HxL Ì U, because U is open 

in E.

Likewise, for each y Î V  there is a ∆y > 0 such that B∆ y

E H yL = E Ý B∆ y

M H yL Ì V . Since 

U Ý V = Æ, we also get E Ý B¶x

M H yL Ý B∆ y

M H yL = Æ. We would like to get rid of the set E in 

this conclusion, and we can do so at a small price: 

Claim: B¶
x�2

HxL Ý B∆
y�2

H yL = Æ for every x Î U and y Î V . (Just check.) 

Thus, A = æ9B¶
x�2

HxL : x Î U= and B = æ:B∆
y�2

H yL : y Î V> work.        à

The conclusion to be drawn from this lemma is that E is disconnected (in E) iff there 

exist disjoint, nonempty, open sets A and B in M  such that A Ý E ¹ Æ, B Ý E ¹ Æ, and 

E Ì A Ý B. And it does not matter whether we take “open” to mean “open in E” or 

“open in M .” That is, this statement reduces to the original definition in case E = M , and 

it gives the correct “relative” definition in any case (by taking U = A Ý E and V = B Ý E). 

Thus, there is no harm in simply taking it as our new definition of a disconnected set, as 

opposed to a disconnected space. In other words, we have dodged a bullet! By adopting 

this harmless rewording of the definition of disconnected, and hence also a rewording of 

the definition of connected, we have freed the concept from any apparent dependence 

on the relative metric. We would be foolish to do otherwise. 

Henceforth, when considering a subset E of a given metric space M , we will call a pair of 

disjoint open sets A and B a disconnection of E if 

A Ý B ¹ Æ ,          B Ý E ¹ Æ ,      and       E Ì A Ü B. 

And, of course, we will say that E is a connected set if no such disconnection of E can be 

found. 

Let’s put this new definition to use by giving another characterization of the intervals in 

R. 

• Theorem:

A subset E of R, containing more than one point, is connected iff whenever x, y Î E 

with x < y, we also have @x, yD Ì E. That is, the connected subsets of R (containing more 

than one point) are precisely the intervals. 

Proof: 

(Ü)

If there exist points x < z < y such that x, y Î E but z Ï E, then E Ì H-¥, zL Ü Hz, ¥L; that 

is, A = H-¥, zL and B = Hz, +¥L is a disconnection of E. 

(Þ)

Now suppose that E satisfies the condition that @x, yD Ì E whenever x, y Î E with x < y, 

but that E is disconnected. Then there are disjoint open sets A and B in R such that 

A Ý E ¹ Æ, B Ý E ¹ Æ , and E Ì A Ü B. 

Given points a Î A Ý E and b Î B Ý E we might as well assume that a < b and hence that 

@a, bD Ì E. But now @a, bD Ì E Ì A Ü B; that is, A and B are a disconnection of the inter-

val @a, bD. (ÞÜ) 

This contradicts the fact that @a, bD is connected. Hence E is connected. 

Finally, suppose that E satisfies @x, yD Ì E whenever x, y Î E with x < y. We want to 

prove that E is an interval. But it follows from this condition that E contains the open 

interval IinfHEL, supHELM, where we include the possibilities infHEL = -¥ and 

supHEL = + ¥ (why?).  Thus, E must be an interval; which particular type of interval 

depends on the disposition of infHEL and supHEL as finite, or not, and as elements, or not, 

of E. à

We can now shed some light on the structure of open sets in R. The proof of the theo-

rem that characterizes open subsets of R (theorem 4.6 on Carothers’s) shows that each 

nonempty open set U in R can be uniquely written as the union of connected subsets. 

Indeed, we wrote an open set in terms of “maximal” intervals Ix, and such intervals are 

actually maximal with respect to being connected subsets of U (i.e., no larger subset of 

U will be connected). At each x Î U, we took Ix to be the union of all of the open subin-

tervals in U that contain x. Thus, Ix is both open and connected, and hence it is an 

open interval. The remainder of the proof shows that two such connected “components” 

of U are either identical or disjoint. There are at most countably many distinct Ix, the 

union of which must be all of U. 

Given any set E, we call the maximal (with respect to containment) connected subsets of 

E the connected components of E. Essentially the same line of reasoning as above shows 

that every set can be written (uniquely) as the disjoint union of its connected compo-

nents. A connected set, then, is a set with only one connected component (namely, itself).

We are now more than ready to speak of continuous functions and connectedness. Our 

first result shows that the two-point discrete space is the canonical disconnected set:

• Lemma:

M  is disconnected iff there exists a continuous map from M  onto 80, 1< (the two-point 

discrete space). 

Proof: 

(Ü)

If f : M �80, 1< is onto , then A = f -1H80<L and B = f -1H81<L are disjoint, nonempty, and 

satisfy A Ü B = M . If f  is also continuous, then A and B are clopen sets and so form a 

disconnection of M . 

(Þ)

Conversely, if A and B are a disconnection of M , then setting f HaL = 0 for a Î A and 

f HbL = 1 for b Î B defines a continuous map f  from M  onto 80, 1< (why?).    à

The lemma above is telling us that there is no continuous method of splitting a con-

nected set M  into two discrete “parcels”. More generally, it follows that M  is connected 

iff any continuous map from M  into a discrete space is necessarily constant. The lemma 

gives a nearly perfect replacement for the definition of disconnected. 

All of the notational difficulties that we faced earlier are now hidden in subtleties of 

language. For example, we have traded the cumbersome notation of relatively open sets 

for the tacit understanding that continuity may mean relative continuity. Most conve-

nient. All of this hard work is beginning to pay off!

In fact, we can now give a very short proof of that generalized intermediate value theo-

rem we have been looking for: 

 

• Theorem:

Let f : HM , dL�HN , ΡL be continuous, and let E be a subset of M . If E is connected, 

then f HEL is connected. 

Proof:

Suppose that f HEL is not connected. Then there exists a continuous, onto map 

g : f HEL�80, 1<. But this means that g é f : E�80, 1< is continuous and onto. That is, E 

is not connected. à

To see that the above theorem is a generalization of the intermediate value theorem, we 

just need to bring our characterization of intervals of R back into the picture: The con-

nected subsets of R (containing more than one point) are precisely the intervals. Thus, 

the image of an interval under a nonconstant continuous function is again an interval. 

• Corollary:

If I is an interval in R and if f : I �R is a nonconstant continuous function, then f HIL 
is an interval. In particular, if a, b Î I with f HaL ¹ f HbL, then f  assumes every value 

between f HaL and f HbL.



        CONNECTED SETS

As we’ll see in this section, a better understanding of the special nature of intervals in R 

will allow us to generalize the intermediate value theorem of calculus. This theorem is 

the formal statement of the informal notion that the graph of a continuous function is 

“unbroken”. The historical basis of the theorem is the concept of a function as measur-

ing, over time, the relative position of an object moving along a straight line. Thus, if we 

track the position y = f HxL of a moving object between time x = a and some subsequent 

time x = b, we would expect the object to “visit” all of the positions y that are intermedi-

ate to f HaL and f HbL. In short, the continuous image of the time interval @a, bD  should 

contain (at least) the full interval of positions between f HaL and f HbL. The secret here is 

the intuitively obvious fact that no interval in R can be split into two relatively open 

parts. We’ll prove this by “brute force” for the interval @a, bD (we’ll do the other cases 

shortly).

Suppose to the contrary that @a, bD = A Ü B, where A and B are nonempty, disjoint, 

relatively open sets in @a, bD. We are going to find a contradiction by examining the 

“border” between A and B. The trouble comes from the fact that A and B are necessarily 

also closed in @a, bD, since each is the complement of an open set: A = @a, bD\B and 

B = @a, bD\A, and so each of A and B lays claim to the “border”. 

To get started, we might as well assume that b Î B, and so Hb - ¶, bD Ì B, for some ¶ > 0, 

since B is open. Now let c = supHAL. Clearly, a £ c £ b, but note that, since A and B are 

open in @a, bD, we actually have a < c < b. Next, it follows from the definition of c that

                Hc - ¶, cL Ý A ¹ Æ         and         Hc, c + ¶L Ý B ¹ Æ 

for any ¶ > 0; in fact, Hc, bD Ì B.

That is, c Î A and c Î B. But then, c Î A Ý B = A Ý B = Æ.(ÞÜ)

This contradiction shows that no such splitting of @a, bD into nonempty, disjoint, open 

sets is available. 

Definition: Based on the above observation, we say that a metric space M  is discon-

nected (or not connected) if M  can be split into the union of two nontrivial open sets, 

that is, if there are nonempty open sets A and B in M  with A Ý B = Æ and A Ü B = M . 

The pair of open sets A and B is called a disconnection of M . We say that M  is con-

nected if no such disconnection can be found. Thus, for example, @a, bD is connected. 

Notice that we could just as well have used closed sets in our definition. If a disconnec-

tion A - B exists, then the disconnecting sets are also closed: A = Bc and B = Ac. That is, 

A and B are clopen sets. Conversely, if M  contains a nontrivial clopen subset A (i.e. a 

clopen set other than Ø  or M ), then A and Ac are a disconnection for M . 

This gives us our first theorem: 

• Theorem:

M  is connected iff M  contains no nontrivial clopen sets. 

Example:

a) R is connected. (We can show that R contains no nontrivial clopen sets by showing 

that if A is a nontrivial open subset of R, then A > A.)

b) A discrete space containing two or more points is disconnected. 

c) The empty set Ø  and any one-point space are connected (by default). 

d) The Cantor set D is (very!) disconnected. Indeed, it follows from previous work that for 

any with x < y there is a z Ï D such that x < z < y. Thus, D is disconnected by the 

(relatively) open sets A = @0, zL Ý D and B = Hz, 1D Ý D.      Ù

Our terminology for connectedness is unavoidably fussy. After all, we have defined con-

nectedness in terms of what it is not, namely, disconnected. To make matters worse, at 

least on the surface, part d) of the above example and our proof that @a, bD is connected 

both suggest the frightening prospect of “relatively connected” as an altogether separate 

notion. Well, fear not! Connectedness is not a relative property for metric spaces. 

To see why, we will need to face the relative definition head-on:

A subset E of a metric space M  is disconnected in E if there exist disjoint, nonempty, 

open (in E) sets U and V  such that E = U Ü V . 

Now, it is immediate that this gives us a pair of open sets A and B in M  such that 

U = A Ý E and V = B Ý E. And so “unrelating” the relative definition, by writing it in 

terms of A and B, yields:

B Ý E ¹ Æ ,   HA Ý EL Ý HB Ý EL = Æ,  and  E = HA Ý EL Ü HB Ý EL or  E Ì A Ü B .

(ÏÏÏ)This mess would be greatly simplified if we could take A and B to be disjoint in 

M . While this need not hold true in more general settings, luck is with us in a metric 

space. 

• Lemma: Let E be a subset of a metric space M . If U and V  are disjoint open sets in E, 

then there are disjoint open sets A and B in M  such that U = A Ý E and V = B Ý E. 

Proof:

For each x Î U there is an ¶x > 0 such that B¶x

E HxL = E Ý B¶x

M HxL Ì U, because U is open 

in E.

Likewise, for each y Î V  there is a ∆y > 0 such that B∆ y

E H yL = E Ý B∆ y

M H yL Ì V . Since 

U Ý V = Æ, we also get E Ý B¶x

M H yL Ý B∆ y

M H yL = Æ. We would like to get rid of the set E in 

this conclusion, and we can do so at a small price: 

Claim: B¶
x�2

HxL Ý B∆
y�2

H yL = Æ for every x Î U and y Î V . (Just check.) 

Thus, A = æ9B¶
x�2

HxL : x Î U= and B = æ:B∆
y�2

H yL : y Î V> work.        à

The conclusion to be drawn from this lemma is that E is disconnected (in E) iff there 

exist disjoint, nonempty, open sets A and B in M  such that A Ý E ¹ Æ, B Ý E ¹ Æ, and 

E Ì A Ý B. And it does not matter whether we take “open” to mean “open in E” or 

“open in M .” That is, this statement reduces to the original definition in case E = M , and 

it gives the correct “relative” definition in any case (by taking U = A Ý E and V = B Ý E). 

Thus, there is no harm in simply taking it as our new definition of a disconnected set, as 

opposed to a disconnected space. In other words, we have dodged a bullet! By adopting 

this harmless rewording of the definition of disconnected, and hence also a rewording of 

the definition of connected, we have freed the concept from any apparent dependence 

on the relative metric. We would be foolish to do otherwise. 

Henceforth, when considering a subset E of a given metric space M , we will call a pair of 

disjoint open sets A and B a disconnection of E if 

A Ý B ¹ Æ ,          B Ý E ¹ Æ ,      and       E Ì A Ü B. 

And, of course, we will say that E is a connected set if no such disconnection of E can be 

found. 

Let’s put this new definition to use by giving another characterization of the intervals in 

R. 

• Theorem:

A subset E of R, containing more than one point, is connected iff whenever x, y Î E 

with x < y, we also have @x, yD Ì E. That is, the connected subsets of R (containing more 

than one point) are precisely the intervals. 

Proof: 

(Ü)

If there exist points x < z < y such that x, y Î E but z Ï E, then E Ì H-¥, zL Ü Hz, ¥L; that 

is, A = H-¥, zL and B = Hz, +¥L is a disconnection of E. 

(Þ)

Now suppose that E satisfies the condition that @x, yD Ì E whenever x, y Î E with x < y, 

but that E is disconnected. Then there are disjoint open sets A and B in R such that 

A Ý E ¹ Æ, B Ý E ¹ Æ , and E Ì A Ü B. 

Given points a Î A Ý E and b Î B Ý E we might as well assume that a < b and hence that 

@a, bD Ì E. But now @a, bD Ì E Ì A Ü B; that is, A and B are a disconnection of the inter-

val @a, bD. (ÞÜ) 

This contradicts the fact that @a, bD is connected. Hence E is connected. 

Finally, suppose that E satisfies @x, yD Ì E whenever x, y Î E with x < y. We want to 

prove that E is an interval. But it follows from this condition that E contains the open 

interval IinfHEL, supHELM, where we include the possibilities infHEL = -¥ and 

supHEL = + ¥ (why?).  Thus, E must be an interval; which particular type of interval 

depends on the disposition of infHEL and supHEL as finite, or not, and as elements, or not, 

of E. à

We can now shed some light on the structure of open sets in R. The proof of the theo-

rem that characterizes open subsets of R (theorem 4.6 on Carothers’s) shows that each 

nonempty open set U in R can be uniquely written as the union of connected subsets. 

Indeed, we wrote an open set in terms of “maximal” intervals Ix, and such intervals are 

actually maximal with respect to being connected subsets of U (i.e., no larger subset of 

U will be connected). At each x Î U, we took Ix to be the union of all of the open subin-

tervals in U that contain x. Thus, Ix is both open and connected, and hence it is an 

open interval. The remainder of the proof shows that two such connected “components” 

of U are either identical or disjoint. There are at most countably many distinct Ix, the 

union of which must be all of U. 

Given any set E, we call the maximal (with respect to containment) connected subsets of 

E the connected components of E. Essentially the same line of reasoning as above shows 

that every set can be written (uniquely) as the disjoint union of its connected compo-

nents. A connected set, then, is a set with only one connected component (namely, itself).

We are now more than ready to speak of continuous functions and connectedness. Our 

first result shows that the two-point discrete space is the canonical disconnected set:

• Lemma:

M  is disconnected iff there exists a continuous map from M  onto 80, 1< (the two-point 

discrete space). 

Proof: 

(Ü)

If f : M �80, 1< is onto , then A = f -1H80<L and B = f -1H81<L are disjoint, nonempty, and 

satisfy A Ü B = M . If f  is also continuous, then A and B are clopen sets and so form a 

disconnection of M . 

(Þ)

Conversely, if A and B are a disconnection of M , then setting f HaL = 0 for a Î A and 

f HbL = 1 for b Î B defines a continuous map f  from M  onto 80, 1< (why?).    à

The lemma above is telling us that there is no continuous method of splitting a con-

nected set M  into two discrete “parcels”. More generally, it follows that M  is connected 

iff any continuous map from M  into a discrete space is necessarily constant. The lemma 

gives a nearly perfect replacement for the definition of disconnected. 

All of the notational difficulties that we faced earlier are now hidden in subtleties of 

language. For example, we have traded the cumbersome notation of relatively open sets 

for the tacit understanding that continuity may mean relative continuity. Most conve-

nient. All of this hard work is beginning to pay off!

In fact, we can now give a very short proof of that generalized intermediate value theo-

rem we have been looking for: 

 

• Theorem:

Let f : HM , dL�HN , ΡL be continuous, and let E be a subset of M . If E is connected, 

then f HEL is connected. 

Proof:

Suppose that f HEL is not connected. Then there exists a continuous, onto map 

g : f HEL�80, 1<. But this means that g é f : E�80, 1< is continuous and onto. That is, E 

is not connected. à

To see that the above theorem is a generalization of the intermediate value theorem, we 

just need to bring our characterization of intervals of R back into the picture: The con-

nected subsets of R (containing more than one point) are precisely the intervals. Thus, 

the image of an interval under a nonconstant continuous function is again an interval. 

• Corollary:

If I is an interval in R and if f : I �R is a nonconstant continuous function, then f HIL 
is an interval. In particular, if a, b Î I with f HaL ¹ f HbL, then f  assumes every value 

between f HaL and f HbL.

2     Connectedness.nb
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As we’ll see in this section, a better understanding of the special nature of intervals in R 

will allow us to generalize the intermediate value theorem of calculus. This theorem is 

the formal statement of the informal notion that the graph of a continuous function is 
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contain (at least) the full interval of positions between f HaL and f HbL. The secret here is 

the intuitively obvious fact that no interval in R can be split into two relatively open 

parts. We’ll prove this by “brute force” for the interval @a, bD (we’ll do the other cases 

shortly).

Suppose to the contrary that @a, bD = A Ü B, where A and B are nonempty, disjoint, 

relatively open sets in @a, bD. We are going to find a contradiction by examining the 

“border” between A and B. The trouble comes from the fact that A and B are necessarily 

also closed in @a, bD, since each is the complement of an open set: A = @a, bD\B and 

B = @a, bD\A, and so each of A and B lays claim to the “border”. 

To get started, we might as well assume that b Î B, and so Hb - ¶, bD Ì B, for some ¶ > 0, 

since B is open. Now let c = supHAL. Clearly, a £ c £ b, but note that, since A and B are 

open in @a, bD, we actually have a < c < b. Next, it follows from the definition of c that

                Hc - ¶, cL Ý A ¹ Æ         and         Hc, c + ¶L Ý B ¹ Æ 

for any ¶ > 0; in fact, Hc, bD Ì B.

That is, c Î A and c Î B. But then, c Î A Ý B = A Ý B = Æ.(ÞÜ)

This contradiction shows that no such splitting of @a, bD into nonempty, disjoint, open 

sets is available. 

Definition: Based on the above observation, we say that a metric space M  is discon-

nected (or not connected) if M  can be split into the union of two nontrivial open sets, 

that is, if there are nonempty open sets A and B in M  with A Ý B = Æ and A Ü B = M . 

The pair of open sets A and B is called a disconnection of M . We say that M  is con-

nected if no such disconnection can be found. Thus, for example, @a, bD is connected. 

Notice that we could just as well have used closed sets in our definition. If a disconnec-

tion A - B exists, then the disconnecting sets are also closed: A = Bc and B = Ac. That is, 

A and B are clopen sets. Conversely, if M  contains a nontrivial clopen subset A (i.e. a 

clopen set other than Ø  or M ), then A and Ac are a disconnection for M . 

This gives us our first theorem: 

• Theorem:

M  is connected iff M  contains no nontrivial clopen sets. 

Example:

a) R is connected. (We can show that R contains no nontrivial clopen sets by showing 

that if A is a nontrivial open subset of R, then A > A.)

b) A discrete space containing two or more points is disconnected. 

c) The empty set Ø  and any one-point space are connected (by default). 

d) The Cantor set D is (very!) disconnected. Indeed, it follows from previous work that for 

any with x < y there is a z Ï D such that x < z < y. Thus, D is disconnected by the 

(relatively) open sets A = @0, zL Ý D and B = Hz, 1D Ý D.      Ù

Our terminology for connectedness is unavoidably fussy. After all, we have defined con-

nectedness in terms of what it is not, namely, disconnected. To make matters worse, at 

least on the surface, part d) of the above example and our proof that @a, bD is connected 

both suggest the frightening prospect of “relatively connected” as an altogether separate 

notion. Well, fear not! Connectedness is not a relative property for metric spaces. 

To see why, we will need to face the relative definition head-on:

A subset E of a metric space M  is disconnected in E if there exist disjoint, nonempty, 

open (in E) sets U and V  such that E = U Ü V . 

Now, it is immediate that this gives us a pair of open sets A and B in M  such that 

U = A Ý E and V = B Ý E. And so “unrelating” the relative definition, by writing it in 

terms of A and B, yields:

B Ý E ¹ Æ ,   HA Ý EL Ý HB Ý EL = Æ,  and  E = HA Ý EL Ü HB Ý EL or  E Ì A Ü B .

(ÏÏÏ)This mess would be greatly simplified if we could take A and B to be disjoint in 

M . While this need not hold true in more general settings, luck is with us in a metric 

space. 

• Lemma: Let E be a subset of a metric space M . If U and V  are disjoint open sets in E, 

then there are disjoint open sets A and B in M  such that U = A Ý E and V = B Ý E. 

Proof:

For each x Î U there is an ¶x > 0 such that B¶x

E HxL = E Ý B¶x

M HxL Ì U, because U is open 

in E.

Likewise, for each y Î V  there is a ∆y > 0 such that B∆ y

E H yL = E Ý B∆ y

M H yL Ì V . Since 

U Ý V = Æ, we also get E Ý B¶x

M H yL Ý B∆ y

M H yL = Æ. We would like to get rid of the set E in 

this conclusion, and we can do so at a small price: 

Claim: B¶
x�2

HxL Ý B∆
y�2

H yL = Æ for every x Î U and y Î V . (Just check.) 

Thus, A = æ9B¶
x�2

HxL : x Î U= and B = æ:B∆
y�2

H yL : y Î V> work.        à

The conclusion to be drawn from this lemma is that E is disconnected (in E) iff there 

exist disjoint, nonempty, open sets A and B in M  such that A Ý E ¹ Æ, B Ý E ¹ Æ, and 

E Ì A Ý B. And it does not matter whether we take “open” to mean “open in E” or 

“open in M .” That is, this statement reduces to the original definition in case E = M , and 

it gives the correct “relative” definition in any case (by taking U = A Ý E and V = B Ý E). 

Thus, there is no harm in simply taking it as our new definition of a disconnected set, as 

opposed to a disconnected space. In other words, we have dodged a bullet! By adopting 

this harmless rewording of the definition of disconnected, and hence also a rewording of 

the definition of connected, we have freed the concept from any apparent dependence 

on the relative metric. We would be foolish to do otherwise. 

Henceforth, when considering a subset E of a given metric space M , we will call a pair of 

disjoint open sets A and B a disconnection of E if 

A Ý B ¹ Æ ,          B Ý E ¹ Æ ,      and       E Ì A Ü B. 

And, of course, we will say that E is a connected set if no such disconnection of E can be 

found. 

Let’s put this new definition to use by giving another characterization of the intervals in 

R. 

• Theorem:

A subset E of R, containing more than one point, is connected iff whenever x, y Î E 

with x < y, we also have @x, yD Ì E. That is, the connected subsets of R (containing more 

than one point) are precisely the intervals. 

Proof: 

(Ü)

If there exist points x < z < y such that x, y Î E but z Ï E, then E Ì H-¥, zL Ü Hz, ¥L; that 

is, A = H-¥, zL and B = Hz, +¥L is a disconnection of E. 

(Þ)

Now suppose that E satisfies the condition that @x, yD Ì E whenever x, y Î E with x < y, 

but that E is disconnected. Then there are disjoint open sets A and B in R such that 

A Ý E ¹ Æ, B Ý E ¹ Æ , and E Ì A Ü B. 

Given points a Î A Ý E and b Î B Ý E we might as well assume that a < b and hence that 

@a, bD Ì E. But now @a, bD Ì E Ì A Ü B; that is, A and B are a disconnection of the inter-

val @a, bD. (ÞÜ) 

This contradicts the fact that @a, bD is connected. Hence E is connected. 

Finally, suppose that E satisfies @x, yD Ì E whenever x, y Î E with x < y. We want to 

prove that E is an interval. But it follows from this condition that E contains the open 

interval IinfHEL, supHELM, where we include the possibilities infHEL = -¥ and 

supHEL = + ¥ (why?).  Thus, E must be an interval; which particular type of interval 

depends on the disposition of infHEL and supHEL as finite, or not, and as elements, or not, 

of E. à

We can now shed some light on the structure of open sets in R. The proof of the theo-

rem that characterizes open subsets of R (theorem 4.6 on Carothers’s) shows that each 

nonempty open set U in R can be uniquely written as the union of connected subsets. 

Indeed, we wrote an open set in terms of “maximal” intervals Ix, and such intervals are 

actually maximal with respect to being connected subsets of U (i.e., no larger subset of 

U will be connected). At each x Î U, we took Ix to be the union of all of the open subin-

tervals in U that contain x. Thus, Ix is both open and connected, and hence it is an 

open interval. The remainder of the proof shows that two such connected “components” 

of U are either identical or disjoint. There are at most countably many distinct Ix, the 

union of which must be all of U. 

Given any set E, we call the maximal (with respect to containment) connected subsets of 

E the connected components of E. Essentially the same line of reasoning as above shows 

that every set can be written (uniquely) as the disjoint union of its connected compo-

nents. A connected set, then, is a set with only one connected component (namely, itself).

We are now more than ready to speak of continuous functions and connectedness. Our 

first result shows that the two-point discrete space is the canonical disconnected set:

• Lemma:

M  is disconnected iff there exists a continuous map from M  onto 80, 1< (the two-point 

discrete space). 

Proof: 

(Ü)

If f : M �80, 1< is onto , then A = f -1H80<L and B = f -1H81<L are disjoint, nonempty, and 

satisfy A Ü B = M . If f  is also continuous, then A and B are clopen sets and so form a 

disconnection of M . 

(Þ)

Conversely, if A and B are a disconnection of M , then setting f HaL = 0 for a Î A and 

f HbL = 1 for b Î B defines a continuous map f  from M  onto 80, 1< (why?).    à

The lemma above is telling us that there is no continuous method of splitting a con-

nected set M  into two discrete “parcels”. More generally, it follows that M  is connected 

iff any continuous map from M  into a discrete space is necessarily constant. The lemma 

gives a nearly perfect replacement for the definition of disconnected. 

All of the notational difficulties that we faced earlier are now hidden in subtleties of 

language. For example, we have traded the cumbersome notation of relatively open sets 

for the tacit understanding that continuity may mean relative continuity. Most conve-

nient. All of this hard work is beginning to pay off!

In fact, we can now give a very short proof of that generalized intermediate value theo-

rem we have been looking for: 

 

• Theorem:

Let f : HM , dL�HN , ΡL be continuous, and let E be a subset of M . If E is connected, 

then f HEL is connected. 

Proof:

Suppose that f HEL is not connected. Then there exists a continuous, onto map 

g : f HEL�80, 1<. But this means that g é f : E�80, 1< is continuous and onto. That is, E 

is not connected. à

To see that the above theorem is a generalization of the intermediate value theorem, we 

just need to bring our characterization of intervals of R back into the picture: The con-

nected subsets of R (containing more than one point) are precisely the intervals. Thus, 

the image of an interval under a nonconstant continuous function is again an interval. 

• Corollary:

If I is an interval in R and if f : I �R is a nonconstant continuous function, then f HIL 
is an interval. In particular, if a, b Î I with f HaL ¹ f HbL, then f  assumes every value 

between f HaL and f HbL.
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        CONNECTED SETS

As we’ll see in this section, a better understanding of the special nature of intervals in R 

will allow us to generalize the intermediate value theorem of calculus. This theorem is 

the formal statement of the informal notion that the graph of a continuous function is 

“unbroken”. The historical basis of the theorem is the concept of a function as measur-

ing, over time, the relative position of an object moving along a straight line. Thus, if we 

track the position y = f HxL of a moving object between time x = a and some subsequent 

time x = b, we would expect the object to “visit” all of the positions y that are intermedi-

ate to f HaL and f HbL. In short, the continuous image of the time interval @a, bD  should 

contain (at least) the full interval of positions between f HaL and f HbL. The secret here is 

the intuitively obvious fact that no interval in R can be split into two relatively open 

parts. We’ll prove this by “brute force” for the interval @a, bD (we’ll do the other cases 

shortly).

Suppose to the contrary that @a, bD = A Ü B, where A and B are nonempty, disjoint, 

relatively open sets in @a, bD. We are going to find a contradiction by examining the 

“border” between A and B. The trouble comes from the fact that A and B are necessarily 

also closed in @a, bD, since each is the complement of an open set: A = @a, bD\B and 

B = @a, bD\A, and so each of A and B lays claim to the “border”. 

To get started, we might as well assume that b Î B, and so Hb - ¶, bD Ì B, for some ¶ > 0, 

since B is open. Now let c = supHAL. Clearly, a £ c £ b, but note that, since A and B are 

open in @a, bD, we actually have a < c < b. Next, it follows from the definition of c that

                Hc - ¶, cL Ý A ¹ Æ         and         Hc, c + ¶L Ý B ¹ Æ 

for any ¶ > 0; in fact, Hc, bD Ì B.

That is, c Î A and c Î B. But then, c Î A Ý B = A Ý B = Æ.(ÞÜ)

This contradiction shows that no such splitting of @a, bD into nonempty, disjoint, open 

sets is available. 

Definition: Based on the above observation, we say that a metric space M  is discon-

nected (or not connected) if M  can be split into the union of two nontrivial open sets, 

that is, if there are nonempty open sets A and B in M  with A Ý B = Æ and A Ü B = M . 

The pair of open sets A and B is called a disconnection of M . We say that M  is con-

nected if no such disconnection can be found. Thus, for example, @a, bD is connected. 

Notice that we could just as well have used closed sets in our definition. If a disconnec-

tion A - B exists, then the disconnecting sets are also closed: A = Bc and B = Ac. That is, 

A and B are clopen sets. Conversely, if M  contains a nontrivial clopen subset A (i.e. a 

clopen set other than Ø  or M ), then A and Ac are a disconnection for M . 

This gives us our first theorem: 

• Theorem:

M  is connected iff M  contains no nontrivial clopen sets. 

Example:

a) R is connected. (We can show that R contains no nontrivial clopen sets by showing 

that if A is a nontrivial open subset of R, then A > A.)

b) A discrete space containing two or more points is disconnected. 

c) The empty set Ø  and any one-point space are connected (by default). 

d) The Cantor set D is (very!) disconnected. Indeed, it follows from previous work that for 

any with x < y there is a z Ï D such that x < z < y. Thus, D is disconnected by the 

(relatively) open sets A = @0, zL Ý D and B = Hz, 1D Ý D.      Ù

Our terminology for connectedness is unavoidably fussy. After all, we have defined con-

nectedness in terms of what it is not, namely, disconnected. To make matters worse, at 

least on the surface, part d) of the above example and our proof that @a, bD is connected 

both suggest the frightening prospect of “relatively connected” as an altogether separate 

notion. Well, fear not! Connectedness is not a relative property for metric spaces. 

To see why, we will need to face the relative definition head-on:

A subset E of a metric space M  is disconnected in E if there exist disjoint, nonempty, 

open (in E) sets U and V  such that E = U Ü V . 

Now, it is immediate that this gives us a pair of open sets A and B in M  such that 

U = A Ý E and V = B Ý E. And so “unrelating” the relative definition, by writing it in 

terms of A and B, yields:

B Ý E ¹ Æ ,   HA Ý EL Ý HB Ý EL = Æ,  and  E = HA Ý EL Ü HB Ý EL or  E Ì A Ü B .

(ÏÏÏ)This mess would be greatly simplified if we could take A and B to be disjoint in 

M . While this need not hold true in more general settings, luck is with us in a metric 

space. 

• Lemma: Let E be a subset of a metric space M . If U and V  are disjoint open sets in E, 

then there are disjoint open sets A and B in M  such that U = A Ý E and V = B Ý E. 

Proof:

For each x Î U there is an ¶x > 0 such that B¶x

E HxL = E Ý B¶x

M HxL Ì U, because U is open 

in E.

Likewise, for each y Î V  there is a ∆y > 0 such that B∆ y

E H yL = E Ý B∆ y

M H yL Ì V . Since 

U Ý V = Æ, we also get E Ý B¶x

M H yL Ý B∆ y

M H yL = Æ. We would like to get rid of the set E in 

this conclusion, and we can do so at a small price: 

Claim: B¶
x�2

HxL Ý B∆
y�2

H yL = Æ for every x Î U and y Î V . (Just check.) 

Thus, A = æ9B¶
x�2

HxL : x Î U= and B = æ:B∆
y�2

H yL : y Î V> work.        à

The conclusion to be drawn from this lemma is that E is disconnected (in E) iff there 

exist disjoint, nonempty, open sets A and B in M  such that A Ý E ¹ Æ, B Ý E ¹ Æ, and 

E Ì A Ý B. And it does not matter whether we take “open” to mean “open in E” or 

“open in M .” That is, this statement reduces to the original definition in case E = M , and 

it gives the correct “relative” definition in any case (by taking U = A Ý E and V = B Ý E). 

Thus, there is no harm in simply taking it as our new definition of a disconnected set, as 

opposed to a disconnected space. In other words, we have dodged a bullet! By adopting 

this harmless rewording of the definition of disconnected, and hence also a rewording of 

the definition of connected, we have freed the concept from any apparent dependence 

on the relative metric. We would be foolish to do otherwise. 

Henceforth, when considering a subset E of a given metric space M , we will call a pair of 

disjoint open sets A and B a disconnection of E if 

A Ý B ¹ Æ ,          B Ý E ¹ Æ ,      and       E Ì A Ü B. 

And, of course, we will say that E is a connected set if no such disconnection of E can be 

found. 

Let’s put this new definition to use by giving another characterization of the intervals in 

R. 

• Theorem:

A subset E of R, containing more than one point, is connected iff whenever x, y Î E 

with x < y, we also have @x, yD Ì E. That is, the connected subsets of R (containing more 

than one point) are precisely the intervals. 

Proof: 

(Ü)

If there exist points x < z < y such that x, y Î E but z Ï E, then E Ì H-¥, zL Ü Hz, ¥L; that 

is, A = H-¥, zL and B = Hz, +¥L is a disconnection of E. 

(Þ)

Now suppose that E satisfies the condition that @x, yD Ì E whenever x, y Î E with x < y, 

but that E is disconnected. Then there are disjoint open sets A and B in R such that 

A Ý E ¹ Æ, B Ý E ¹ Æ , and E Ì A Ü B. 

Given points a Î A Ý E and b Î B Ý E we might as well assume that a < b and hence that 

@a, bD Ì E. But now @a, bD Ì E Ì A Ü B; that is, A and B are a disconnection of the inter-

val @a, bD. (ÞÜ) 

This contradicts the fact that @a, bD is connected. Hence E is connected. 

Finally, suppose that E satisfies @x, yD Ì E whenever x, y Î E with x < y. We want to 

prove that E is an interval. But it follows from this condition that E contains the open 

interval IinfHEL, supHELM, where we include the possibilities infHEL = -¥ and 

supHEL = + ¥ (why?).  Thus, E must be an interval; which particular type of interval 

depends on the disposition of infHEL and supHEL as finite, or not, and as elements, or not, 

of E. à

We can now shed some light on the structure of open sets in R. The proof of the theo-

rem that characterizes open subsets of R (theorem 4.6 on Carothers’s) shows that each 

nonempty open set U in R can be uniquely written as the union of connected subsets. 

Indeed, we wrote an open set in terms of “maximal” intervals Ix, and such intervals are 

actually maximal with respect to being connected subsets of U (i.e., no larger subset of 

U will be connected). At each x Î U, we took Ix to be the union of all of the open subin-

tervals in U that contain x. Thus, Ix is both open and connected, and hence it is an 

open interval. The remainder of the proof shows that two such connected “components” 

of U are either identical or disjoint. There are at most countably many distinct Ix, the 

union of which must be all of U. 

Given any set E, we call the maximal (with respect to containment) connected subsets of 

E the connected components of E. Essentially the same line of reasoning as above shows 

that every set can be written (uniquely) as the disjoint union of its connected compo-

nents. A connected set, then, is a set with only one connected component (namely, itself).

We are now more than ready to speak of continuous functions and connectedness. Our 

first result shows that the two-point discrete space is the canonical disconnected set:

• Lemma:

M  is disconnected iff there exists a continuous map from M  onto 80, 1< (the two-point 

discrete space). 

Proof: 

(Ü)

If f : M �80, 1< is onto , then A = f -1H80<L and B = f -1H81<L are disjoint, nonempty, and 

satisfy A Ü B = M . If f  is also continuous, then A and B are clopen sets and so form a 

disconnection of M . 

(Þ)

Conversely, if A and B are a disconnection of M , then setting f HaL = 0 for a Î A and 

f HbL = 1 for b Î B defines a continuous map f  from M  onto 80, 1< (why?).    à

The lemma above is telling us that there is no continuous method of splitting a con-

nected set M  into two discrete “parcels”. More generally, it follows that M  is connected 

iff any continuous map from M  into a discrete space is necessarily constant. The lemma 

gives a nearly perfect replacement for the definition of disconnected. 

All of the notational difficulties that we faced earlier are now hidden in subtleties of 

language. For example, we have traded the cumbersome notation of relatively open sets 

for the tacit understanding that continuity may mean relative continuity. Most conve-

nient. All of this hard work is beginning to pay off!

In fact, we can now give a very short proof of that generalized intermediate value theo-

rem we have been looking for: 

 

• Theorem:

Let f : HM , dL�HN , ΡL be continuous, and let E be a subset of M . If E is connected, 

then f HEL is connected. 

Proof:

Suppose that f HEL is not connected. Then there exists a continuous, onto map 

g : f HEL�80, 1<. But this means that g é f : E�80, 1< is continuous and onto. That is, E 

is not connected. à

To see that the above theorem is a generalization of the intermediate value theorem, we 

just need to bring our characterization of intervals of R back into the picture: The con-

nected subsets of R (containing more than one point) are precisely the intervals. Thus, 

the image of an interval under a nonconstant continuous function is again an interval. 

• Corollary:

If I is an interval in R and if f : I �R is a nonconstant continuous function, then f HIL 
is an interval. In particular, if a, b Î I with f HaL ¹ f HbL, then f  assumes every value 

between f HaL and f HbL.
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        CONNECTED SETS

As we’ll see in this section, a better understanding of the special nature of intervals in R 

will allow us to generalize the intermediate value theorem of calculus. This theorem is 

the formal statement of the informal notion that the graph of a continuous function is 

“unbroken”. The historical basis of the theorem is the concept of a function as measur-

ing, over time, the relative position of an object moving along a straight line. Thus, if we 

track the position y = f HxL of a moving object between time x = a and some subsequent 

time x = b, we would expect the object to “visit” all of the positions y that are intermedi-

ate to f HaL and f HbL. In short, the continuous image of the time interval @a, bD  should 

contain (at least) the full interval of positions between f HaL and f HbL. The secret here is 

the intuitively obvious fact that no interval in R can be split into two relatively open 

parts. We’ll prove this by “brute force” for the interval @a, bD (we’ll do the other cases 

shortly).

Suppose to the contrary that @a, bD = A Ü B, where A and B are nonempty, disjoint, 

relatively open sets in @a, bD. We are going to find a contradiction by examining the 

“border” between A and B. The trouble comes from the fact that A and B are necessarily 

also closed in @a, bD, since each is the complement of an open set: A = @a, bD\B and 

B = @a, bD\A, and so each of A and B lays claim to the “border”. 

To get started, we might as well assume that b Î B, and so Hb - ¶, bD Ì B, for some ¶ > 0, 

since B is open. Now let c = supHAL. Clearly, a £ c £ b, but note that, since A and B are 

open in @a, bD, we actually have a < c < b. Next, it follows from the definition of c that

                Hc - ¶, cL Ý A ¹ Æ         and         Hc, c + ¶L Ý B ¹ Æ 

for any ¶ > 0; in fact, Hc, bD Ì B.

That is, c Î A and c Î B. But then, c Î A Ý B = A Ý B = Æ.(ÞÜ)

This contradiction shows that no such splitting of @a, bD into nonempty, disjoint, open 

sets is available. 

Definition: Based on the above observation, we say that a metric space M  is discon-

nected (or not connected) if M  can be split into the union of two nontrivial open sets, 

that is, if there are nonempty open sets A and B in M  with A Ý B = Æ and A Ü B = M . 

The pair of open sets A and B is called a disconnection of M . We say that M  is con-

nected if no such disconnection can be found. Thus, for example, @a, bD is connected. 

Notice that we could just as well have used closed sets in our definition. If a disconnec-

tion A - B exists, then the disconnecting sets are also closed: A = Bc and B = Ac. That is, 

A and B are clopen sets. Conversely, if M  contains a nontrivial clopen subset A (i.e. a 

clopen set other than Ø  or M ), then A and Ac are a disconnection for M . 

This gives us our first theorem: 

• Theorem:

M  is connected iff M  contains no nontrivial clopen sets. 

Example:

a) R is connected. (We can show that R contains no nontrivial clopen sets by showing 

that if A is a nontrivial open subset of R, then A > A.)

b) A discrete space containing two or more points is disconnected. 

c) The empty set Ø  and any one-point space are connected (by default). 

d) The Cantor set D is (very!) disconnected. Indeed, it follows from previous work that for 

any with x < y there is a z Ï D such that x < z < y. Thus, D is disconnected by the 

(relatively) open sets A = @0, zL Ý D and B = Hz, 1D Ý D.      Ù

Our terminology for connectedness is unavoidably fussy. After all, we have defined con-

nectedness in terms of what it is not, namely, disconnected. To make matters worse, at 

least on the surface, part d) of the above example and our proof that @a, bD is connected 

both suggest the frightening prospect of “relatively connected” as an altogether separate 

notion. Well, fear not! Connectedness is not a relative property for metric spaces. 

To see why, we will need to face the relative definition head-on:

A subset E of a metric space M  is disconnected in E if there exist disjoint, nonempty, 

open (in E) sets U and V  such that E = U Ü V . 

Now, it is immediate that this gives us a pair of open sets A and B in M  such that 

U = A Ý E and V = B Ý E. And so “unrelating” the relative definition, by writing it in 

terms of A and B, yields:

B Ý E ¹ Æ ,   HA Ý EL Ý HB Ý EL = Æ,  and  E = HA Ý EL Ü HB Ý EL or  E Ì A Ü B .

(ÏÏÏ)This mess would be greatly simplified if we could take A and B to be disjoint in 

M . While this need not hold true in more general settings, luck is with us in a metric 

space. 

• Lemma: Let E be a subset of a metric space M . If U and V  are disjoint open sets in E, 

then there are disjoint open sets A and B in M  such that U = A Ý E and V = B Ý E. 

Proof:

For each x Î U there is an ¶x > 0 such that B¶x

E HxL = E Ý B¶x

M HxL Ì U, because U is open 

in E.

Likewise, for each y Î V  there is a ∆y > 0 such that B∆ y

E H yL = E Ý B∆ y

M H yL Ì V . Since 

U Ý V = Æ, we also get E Ý B¶x

M H yL Ý B∆ y

M H yL = Æ. We would like to get rid of the set E in 

this conclusion, and we can do so at a small price: 

Claim: B¶
x�2

HxL Ý B∆
y�2

H yL = Æ for every x Î U and y Î V . (Just check.) 

Thus, A = æ9B¶
x�2

HxL : x Î U= and B = æ:B∆
y�2

H yL : y Î V> work.        à

The conclusion to be drawn from this lemma is that E is disconnected (in E) iff there 

exist disjoint, nonempty, open sets A and B in M  such that A Ý E ¹ Æ, B Ý E ¹ Æ, and 

E Ì A Ý B. And it does not matter whether we take “open” to mean “open in E” or 

“open in M .” That is, this statement reduces to the original definition in case E = M , and 

it gives the correct “relative” definition in any case (by taking U = A Ý E and V = B Ý E). 

Thus, there is no harm in simply taking it as our new definition of a disconnected set, as 

opposed to a disconnected space. In other words, we have dodged a bullet! By adopting 

this harmless rewording of the definition of disconnected, and hence also a rewording of 

the definition of connected, we have freed the concept from any apparent dependence 

on the relative metric. We would be foolish to do otherwise. 

Henceforth, when considering a subset E of a given metric space M , we will call a pair of 

disjoint open sets A and B a disconnection of E if 

A Ý B ¹ Æ ,          B Ý E ¹ Æ ,      and       E Ì A Ü B. 

And, of course, we will say that E is a connected set if no such disconnection of E can be 

found. 

Let’s put this new definition to use by giving another characterization of the intervals in 

R. 

• Theorem:

A subset E of R, containing more than one point, is connected iff whenever x, y Î E 

with x < y, we also have @x, yD Ì E. That is, the connected subsets of R (containing more 

than one point) are precisely the intervals. 

Proof: 

(Ü)

If there exist points x < z < y such that x, y Î E but z Ï E, then E Ì H-¥, zL Ü Hz, ¥L; that 

is, A = H-¥, zL and B = Hz, +¥L is a disconnection of E. 

(Þ)

Now suppose that E satisfies the condition that @x, yD Ì E whenever x, y Î E with x < y, 

but that E is disconnected. Then there are disjoint open sets A and B in R such that 

A Ý E ¹ Æ, B Ý E ¹ Æ , and E Ì A Ü B. 

Given points a Î A Ý E and b Î B Ý E we might as well assume that a < b and hence that 

@a, bD Ì E. But now @a, bD Ì E Ì A Ü B; that is, A and B are a disconnection of the inter-

val @a, bD. (ÞÜ) 

This contradicts the fact that @a, bD is connected. Hence E is connected. 

Finally, suppose that E satisfies @x, yD Ì E whenever x, y Î E with x < y. We want to 

prove that E is an interval. But it follows from this condition that E contains the open 

interval IinfHEL, supHELM, where we include the possibilities infHEL = -¥ and 

supHEL = + ¥ (why?).  Thus, E must be an interval; which particular type of interval 

depends on the disposition of infHEL and supHEL as finite, or not, and as elements, or not, 

of E. à

We can now shed some light on the structure of open sets in R. The proof of the theo-

rem that characterizes open subsets of R (theorem 4.6 on Carothers’s) shows that each 

nonempty open set U in R can be uniquely written as the union of connected subsets. 

Indeed, we wrote an open set in terms of “maximal” intervals Ix, and such intervals are 

actually maximal with respect to being connected subsets of U (i.e., no larger subset of 

U will be connected). At each x Î U, we took Ix to be the union of all of the open subin-

tervals in U that contain x. Thus, Ix is both open and connected, and hence it is an 

open interval. The remainder of the proof shows that two such connected “components” 

of U are either identical or disjoint. There are at most countably many distinct Ix, the 

union of which must be all of U. 

Given any set E, we call the maximal (with respect to containment) connected subsets of 

E the connected components of E. Essentially the same line of reasoning as above shows 

that every set can be written (uniquely) as the disjoint union of its connected compo-

nents. A connected set, then, is a set with only one connected component (namely, itself).

We are now more than ready to speak of continuous functions and connectedness. Our 

first result shows that the two-point discrete space is the canonical disconnected set:

• Lemma:

M  is disconnected iff there exists a continuous map from M  onto 80, 1< (the two-point 

discrete space). 

Proof: 

(Ü)

If f : M �80, 1< is onto , then A = f -1H80<L and B = f -1H81<L are disjoint, nonempty, and 

satisfy A Ü B = M . If f  is also continuous, then A and B are clopen sets and so form a 

disconnection of M . 

(Þ)

Conversely, if A and B are a disconnection of M , then setting f HaL = 0 for a Î A and 

f HbL = 1 for b Î B defines a continuous map f  from M  onto 80, 1< (why?).    à

The lemma above is telling us that there is no continuous method of splitting a con-

nected set M  into two discrete “parcels”. More generally, it follows that M  is connected 

iff any continuous map from M  into a discrete space is necessarily constant. The lemma 

gives a nearly perfect replacement for the definition of disconnected. 

All of the notational difficulties that we faced earlier are now hidden in subtleties of 

language. For example, we have traded the cumbersome notation of relatively open sets 

for the tacit understanding that continuity may mean relative continuity. Most conve-

nient. All of this hard work is beginning to pay off!

In fact, we can now give a very short proof of that generalized intermediate value theo-

rem we have been looking for: 

 

• Theorem:

Let f : HM , dL�HN , ΡL be continuous, and let E be a subset of M . If E is connected, 

then f HEL is connected. 

Proof:

Suppose that f HEL is not connected. Then there exists a continuous, onto map 

g : f HEL�80, 1<. But this means that g é f : E�80, 1< is continuous and onto. That is, E 

is not connected. à

To see that the above theorem is a generalization of the intermediate value theorem, we 

just need to bring our characterization of intervals of R back into the picture: The con-

nected subsets of R (containing more than one point) are precisely the intervals. Thus, 

the image of an interval under a nonconstant continuous function is again an interval. 

• Corollary:

If I is an interval in R and if f : I �R is a nonconstant continuous function, then f HIL 
is an interval. In particular, if a, b Î I with f HaL ¹ f HbL, then f  assumes every value 

between f HaL and f HbL.

Connectedness.nb    5
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As we’ll see in this section, a better understanding of the special nature of intervals in R 

will allow us to generalize the intermediate value theorem of calculus. This theorem is 

the formal statement of the informal notion that the graph of a continuous function is 

“unbroken”. The historical basis of the theorem is the concept of a function as measur-

ing, over time, the relative position of an object moving along a straight line. Thus, if we 

track the position y = f HxL of a moving object between time x = a and some subsequent 

time x = b, we would expect the object to “visit” all of the positions y that are intermedi-

ate to f HaL and f HbL. In short, the continuous image of the time interval @a, bD  should 

contain (at least) the full interval of positions between f HaL and f HbL. The secret here is 

the intuitively obvious fact that no interval in R can be split into two relatively open 

parts. We’ll prove this by “brute force” for the interval @a, bD (we’ll do the other cases 

shortly).

Suppose to the contrary that @a, bD = A Ü B, where A and B are nonempty, disjoint, 

relatively open sets in @a, bD. We are going to find a contradiction by examining the 

“border” between A and B. The trouble comes from the fact that A and B are necessarily 

also closed in @a, bD, since each is the complement of an open set: A = @a, bD\B and 

B = @a, bD\A, and so each of A and B lays claim to the “border”. 

To get started, we might as well assume that b Î B, and so Hb - ¶, bD Ì B, for some ¶ > 0, 

since B is open. Now let c = supHAL. Clearly, a £ c £ b, but note that, since A and B are 

open in @a, bD, we actually have a < c < b. Next, it follows from the definition of c that

                Hc - ¶, cL Ý A ¹ Æ         and         Hc, c + ¶L Ý B ¹ Æ 

for any ¶ > 0; in fact, Hc, bD Ì B.

That is, c Î A and c Î B. But then, c Î A Ý B = A Ý B = Æ.(ÞÜ)

This contradiction shows that no such splitting of @a, bD into nonempty, disjoint, open 

sets is available. 

Definition: Based on the above observation, we say that a metric space M  is discon-

nected (or not connected) if M  can be split into the union of two nontrivial open sets, 

that is, if there are nonempty open sets A and B in M  with A Ý B = Æ and A Ü B = M . 

The pair of open sets A and B is called a disconnection of M . We say that M  is con-

nected if no such disconnection can be found. Thus, for example, @a, bD is connected. 

Notice that we could just as well have used closed sets in our definition. If a disconnec-

tion A - B exists, then the disconnecting sets are also closed: A = Bc and B = Ac. That is, 

A and B are clopen sets. Conversely, if M  contains a nontrivial clopen subset A (i.e. a 

clopen set other than Ø  or M ), then A and Ac are a disconnection for M . 

This gives us our first theorem: 

• Theorem:

M  is connected iff M  contains no nontrivial clopen sets. 

Example:

a) R is connected. (We can show that R contains no nontrivial clopen sets by showing 

that if A is a nontrivial open subset of R, then A > A.)

b) A discrete space containing two or more points is disconnected. 

c) The empty set Ø  and any one-point space are connected (by default). 

d) The Cantor set D is (very!) disconnected. Indeed, it follows from previous work that for 

any with x < y there is a z Ï D such that x < z < y. Thus, D is disconnected by the 

(relatively) open sets A = @0, zL Ý D and B = Hz, 1D Ý D.      Ù

Our terminology for connectedness is unavoidably fussy. After all, we have defined con-

nectedness in terms of what it is not, namely, disconnected. To make matters worse, at 

least on the surface, part d) of the above example and our proof that @a, bD is connected 

both suggest the frightening prospect of “relatively connected” as an altogether separate 

notion. Well, fear not! Connectedness is not a relative property for metric spaces. 

To see why, we will need to face the relative definition head-on:

A subset E of a metric space M  is disconnected in E if there exist disjoint, nonempty, 

open (in E) sets U and V  such that E = U Ü V . 

Now, it is immediate that this gives us a pair of open sets A and B in M  such that 

U = A Ý E and V = B Ý E. And so “unrelating” the relative definition, by writing it in 

terms of A and B, yields:

B Ý E ¹ Æ ,   HA Ý EL Ý HB Ý EL = Æ,  and  E = HA Ý EL Ü HB Ý EL or  E Ì A Ü B .

(ÏÏÏ)This mess would be greatly simplified if we could take A and B to be disjoint in 

M . While this need not hold true in more general settings, luck is with us in a metric 

space. 

• Lemma: Let E be a subset of a metric space M . If U and V  are disjoint open sets in E, 

then there are disjoint open sets A and B in M  such that U = A Ý E and V = B Ý E. 

Proof:

For each x Î U there is an ¶x > 0 such that B¶x

E HxL = E Ý B¶x

M HxL Ì U, because U is open 

in E.

Likewise, for each y Î V  there is a ∆y > 0 such that B∆ y

E H yL = E Ý B∆ y

M H yL Ì V . Since 

U Ý V = Æ, we also get E Ý B¶x

M H yL Ý B∆ y

M H yL = Æ. We would like to get rid of the set E in 

this conclusion, and we can do so at a small price: 

Claim: B¶
x�2

HxL Ý B∆
y�2

H yL = Æ for every x Î U and y Î V . (Just check.) 

Thus, A = æ9B¶
x�2

HxL : x Î U= and B = æ:B∆
y�2

H yL : y Î V> work.        à

The conclusion to be drawn from this lemma is that E is disconnected (in E) iff there 

exist disjoint, nonempty, open sets A and B in M  such that A Ý E ¹ Æ, B Ý E ¹ Æ, and 

E Ì A Ý B. And it does not matter whether we take “open” to mean “open in E” or 

“open in M .” That is, this statement reduces to the original definition in case E = M , and 

it gives the correct “relative” definition in any case (by taking U = A Ý E and V = B Ý E). 

Thus, there is no harm in simply taking it as our new definition of a disconnected set, as 

opposed to a disconnected space. In other words, we have dodged a bullet! By adopting 

this harmless rewording of the definition of disconnected, and hence also a rewording of 

the definition of connected, we have freed the concept from any apparent dependence 

on the relative metric. We would be foolish to do otherwise. 

Henceforth, when considering a subset E of a given metric space M , we will call a pair of 

disjoint open sets A and B a disconnection of E if 

A Ý B ¹ Æ ,          B Ý E ¹ Æ ,      and       E Ì A Ü B. 

And, of course, we will say that E is a connected set if no such disconnection of E can be 

found. 

Let’s put this new definition to use by giving another characterization of the intervals in 

R. 

• Theorem:

A subset E of R, containing more than one point, is connected iff whenever x, y Î E 

with x < y, we also have @x, yD Ì E. That is, the connected subsets of R (containing more 

than one point) are precisely the intervals. 

Proof: 

(Ü)

If there exist points x < z < y such that x, y Î E but z Ï E, then E Ì H-¥, zL Ü Hz, ¥L; that 

is, A = H-¥, zL and B = Hz, +¥L is a disconnection of E. 

(Þ)

Now suppose that E satisfies the condition that @x, yD Ì E whenever x, y Î E with x < y, 

but that E is disconnected. Then there are disjoint open sets A and B in R such that 

A Ý E ¹ Æ, B Ý E ¹ Æ , and E Ì A Ü B. 

Given points a Î A Ý E and b Î B Ý E we might as well assume that a < b and hence that 

@a, bD Ì E. But now @a, bD Ì E Ì A Ü B; that is, A and B are a disconnection of the inter-

val @a, bD. (ÞÜ) 

This contradicts the fact that @a, bD is connected. Hence E is connected. 

Finally, suppose that E satisfies @x, yD Ì E whenever x, y Î E with x < y. We want to 

prove that E is an interval. But it follows from this condition that E contains the open 

interval IinfHEL, supHELM, where we include the possibilities infHEL = -¥ and 

supHEL = + ¥ (why?).  Thus, E must be an interval; which particular type of interval 

depends on the disposition of infHEL and supHEL as finite, or not, and as elements, or not, 

of E. à

We can now shed some light on the structure of open sets in R. The proof of the theo-

rem that characterizes open subsets of R (theorem 4.6 on Carothers’s) shows that each 

nonempty open set U in R can be uniquely written as the union of connected subsets. 

Indeed, we wrote an open set in terms of “maximal” intervals Ix, and such intervals are 

actually maximal with respect to being connected subsets of U (i.e., no larger subset of 

U will be connected). At each x Î U, we took Ix to be the union of all of the open subin-

tervals in U that contain x. Thus, Ix is both open and connected, and hence it is an 

open interval. The remainder of the proof shows that two such connected “components” 

of U are either identical or disjoint. There are at most countably many distinct Ix, the 

union of which must be all of U. 

Given any set E, we call the maximal (with respect to containment) connected subsets of 

E the connected components of E. Essentially the same line of reasoning as above shows 

that every set can be written (uniquely) as the disjoint union of its connected compo-

nents. A connected set, then, is a set with only one connected component (namely, itself).

We are now more than ready to speak of continuous functions and connectedness. Our 

first result shows that the two-point discrete space is the canonical disconnected set:

• Lemma:

M  is disconnected iff there exists a continuous map from M  onto 80, 1< (the two-point 

discrete space). 

Proof: 

(Ü)

If f : M �80, 1< is onto , then A = f -1H80<L and B = f -1H81<L are disjoint, nonempty, and 

satisfy A Ü B = M . If f  is also continuous, then A and B are clopen sets and so form a 

disconnection of M . 

(Þ)

Conversely, if A and B are a disconnection of M , then setting f HaL = 0 for a Î A and 

f HbL = 1 for b Î B defines a continuous map f  from M  onto 80, 1< (why?).    à

The lemma above is telling us that there is no continuous method of splitting a con-

nected set M  into two discrete “parcels”. More generally, it follows that M  is connected 

iff any continuous map from M  into a discrete space is necessarily constant. The lemma 

gives a nearly perfect replacement for the definition of disconnected. 

All of the notational difficulties that we faced earlier are now hidden in subtleties of 

language. For example, we have traded the cumbersome notation of relatively open sets 

for the tacit understanding that continuity may mean relative continuity. Most conve-

nient. All of this hard work is beginning to pay off!

In fact, we can now give a very short proof of that generalized intermediate value theo-

rem we have been looking for: 

 

• Theorem:

Let f : HM , dL�HN , ΡL be continuous, and let E be a subset of M . If E is connected, 

then f HEL is connected. 

Proof:

Suppose that f HEL is not connected. Then there exists a continuous, onto map 

g : f HEL�80, 1<. But this means that g é f : E�80, 1< is continuous and onto. That is, E 

is not connected. à

To see that the above theorem is a generalization of the intermediate value theorem, we 

just need to bring our characterization of intervals of R back into the picture: The con-

nected subsets of R (containing more than one point) are precisely the intervals. Thus, 

the image of an interval under a nonconstant continuous function is again an interval. 

• Corollary:

If I is an interval in R and if f : I �R is a nonconstant continuous function, then f HIL 
is an interval. In particular, if a, b Î I with f HaL ¹ f HbL, then f  assumes every value 

between f HaL and f HbL.
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